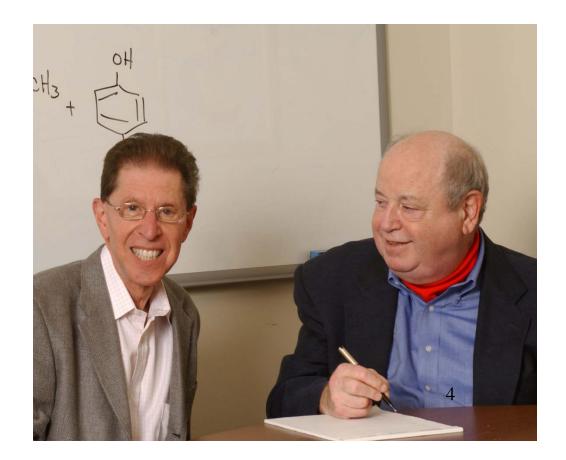

Information for New Graduate Students Fall 2012

Engineering and Chemistry for Sustainable Technology

Charles A. Eckert and Charles L. Liotta School of Chemical & Bimolecular Engineering School of Chemistry and Biochemistry Specialty Separations Center Georgia Tech, Atlanta

1



"Sustainable" is not just hugging a tree...

It's getting everyone to hug a tree

Chemical Engineering and Chemistry 23-Year Collaboration

- Jointly Directed PhD Students
 - ✓ 50 Completed✓ 12 In Progress
- ~50 Joint Research Grants
- ~250 Publications and Presentations
- 2004 Presidential Green Chemistry Challenge Award

Current Group – ChEs and Chemists

• Students – All Co-Advised

 PhD Candidates: Emily Nixon, Kyle Flack, Will Heaner, Mike Mojica, Amy Rohan, Jackson Switzer, Wilmarie Medina, Chris Butch, Amber Rumple, Imani Jones, Mark Conley, Wes Woodham.

✓ Undergraduates (8 at present)

- Staff
 - Senior Scientists and Postdoctorals Pamela Pollet, Beth Cope, Rani Jha, Elizabeth Biddinger, Steve Saunders, Andrea Song
 - ✓ Coordinator, Deborah Babykin
- Other Collaborators
 - ✓ Other GT Students and Faculty
 - ✓ Students and Faculty at Other Universities
 - ✓ Industry Partners

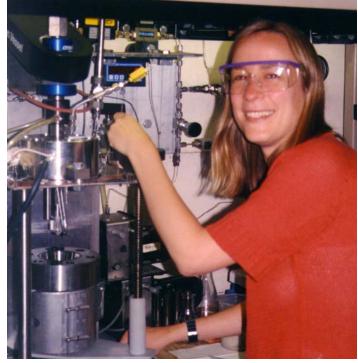
We Work Together

- Each Problem Has a Team
 ✓ Multilevel, Multidisciplinary
- Each Person Is on Multiple Teams
- Advantages
 - ✓ Not All Problems Are Four Years
 - ✓ Facilitates Communications
 - ✓ Able to Do High Risk, High Return Research

Michelle Kassner, PhD ChBE, 2008, Chevron; Tori Blausucci, PhD ChBE. 2009. ExxonMobil

What Do We Do – and Why?

- Tunable Solvents
 ✓ Supercritcal Fluids
 ✓ Nearcritical Fluids
 ✓ Gas Expanded Fluids
- Smart Solvents
- Advantages
 - ✓ Benign



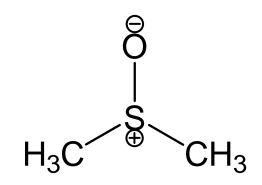
Ryan Hart, PhD, ChBE, 2010, Exponent

- ✓ Better Transport Properties
- ✓ Faclile Downstream Processing

Examples of Sustainable Technology

- Goals
 - Environmentally Benign
 - ✓Cost-Effective
- Energy Applications
 CO₂ Recovery from Flue Gas
 Benign Harvesting of Sands and Oil Shale
- Green Pharmaceuticals

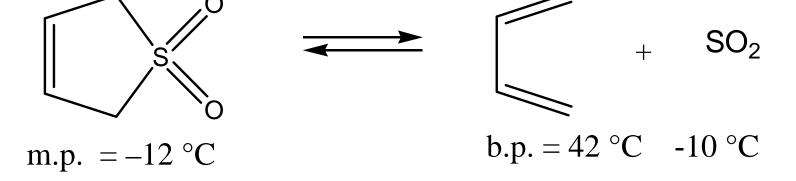
Heather Patrick, PhD ChBE, 2000, Emory University


- ✓ Benign Reactions in Nearcritical Water
- Coupling Reaction + Separations

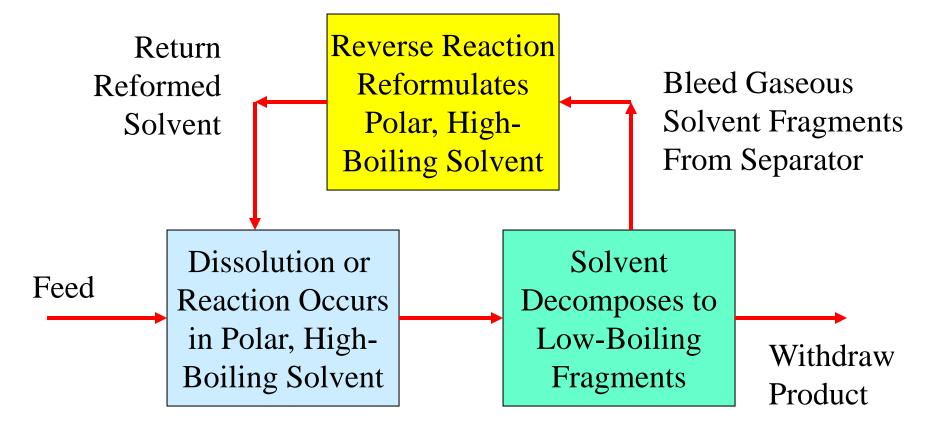
Continuous Reactions for Pharma

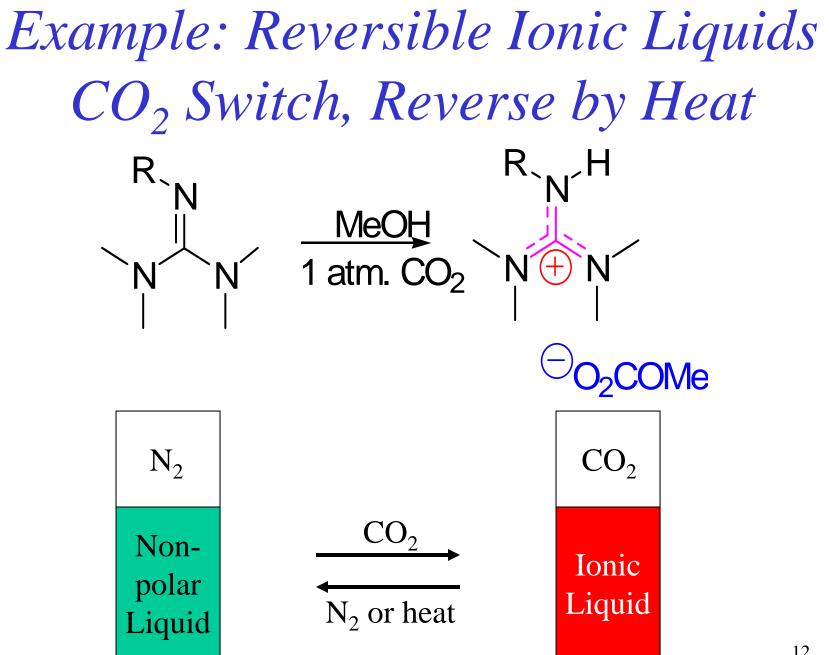
Homogeneous Catalyst Recycle

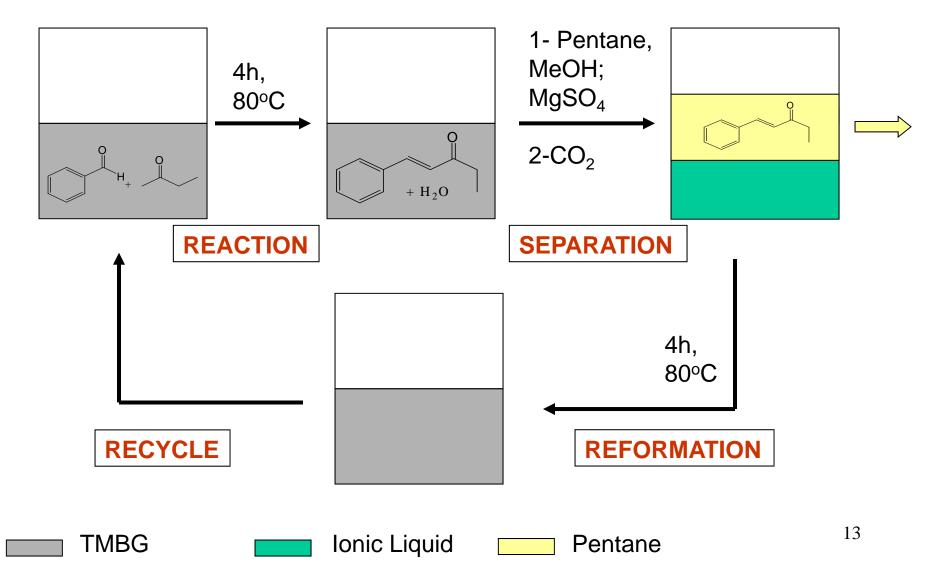
Example: Smart Solvent Replacement for Supersolvent -- DMSO


- Product Isolation from DMSO
 - ✓ Add water, precipitate
 - \checkmark Extract with another organic
- Problems with DMSO Removal
 - Isolation is product dependent.
 - Contaminated aqueous waste
 - ✓ No solvent recycling

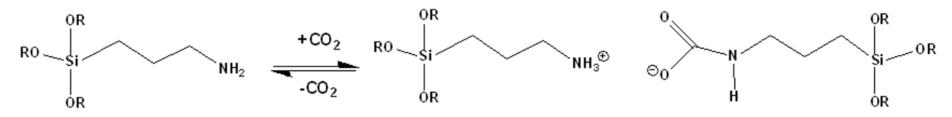
Dimethyl sulfoxide


- Smart Solvent Changes Properties on Command
 - ✓ As good as DMSO
 - ✓ Decomposes into Volatile Fragments on Command
 - Easy to Remove
 - ✓ Can be Reformed and Recycled Later


DMSO-like Solvent Has "Built-In" Recycle Pipyrlene Sulfone


- Solvent Properties Comparable to DMSO
- T-Based Switch, Decomposition ~110°C
- Reaction is Reversible
- Equilibrium and Rates Are Good

Potential Process Cycle Extraction or Reaction with Smart Solvent

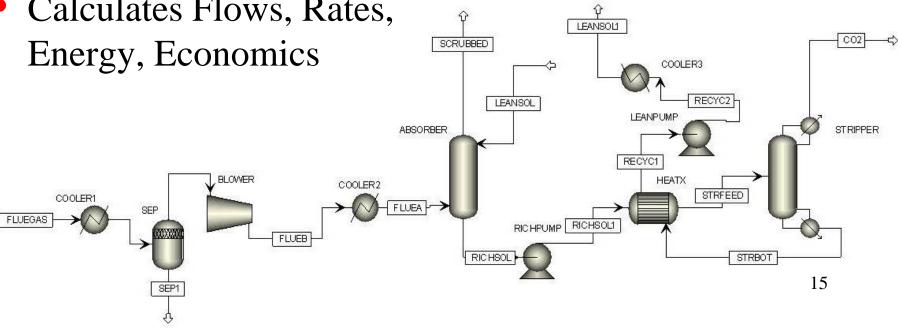


Process: Claisen-Schmidt Reaction and Separation Using Reversible Ionic Liquid

CO₂ Recovery from Power Plants Using Single-Component Silyl RevILs

- Dual Mechanism Solvent Absorption
 - ✓ Chemical Absorption
 - ✤By Reaction of CO₂ with RevILs
 - ✓ Physical Absorption

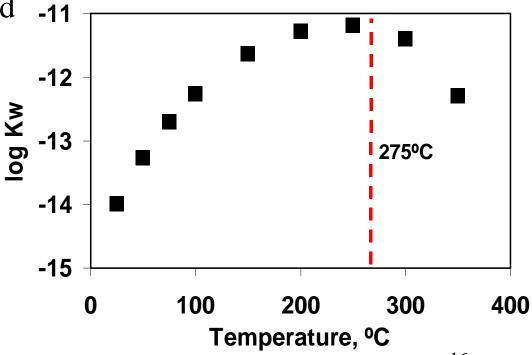
*****By Dissolution of CO_2 in RevILs

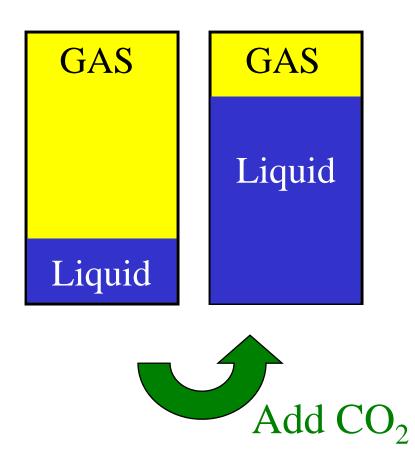

Increases Capacity

✓ Better Separation with Less Energy Penalty

ASPEN Flow Sheet

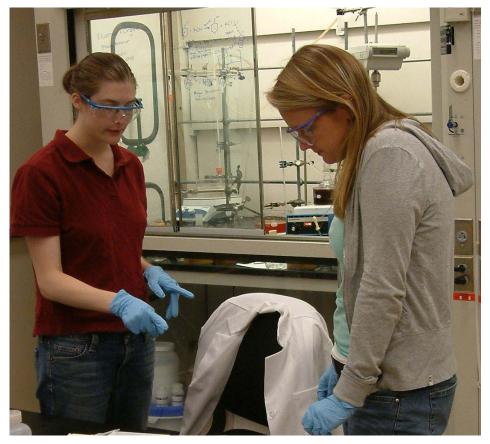
- Industry Standard Design Software
- Permits Process Alternatives, Optimization
- Calculates Flows, Rates, Energy, Economics


	Simulation Results
	\$ per ton of CO ₂ removed
Fixed Costs	4.50
Regeneration	3.61
Energy (Steam)	
Electricity	4.06
Cooling Water	0.87
Materials	2.16
Total	15.20

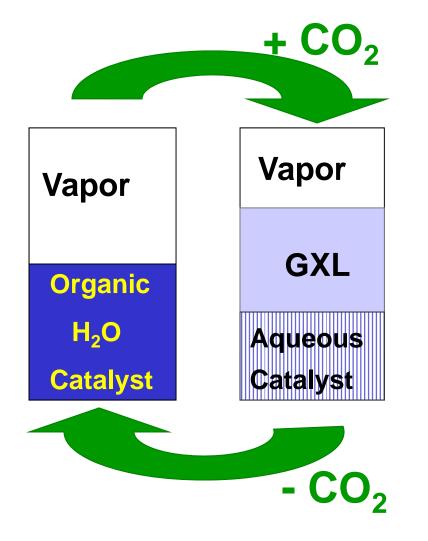

Nearcritical Water: A Benign Solvent

- Research Partner: Lilly
- Water at 250-350° C
 - ✓ Like Acetone
 - ✓ Dissolves both Salts and → Organics
- Natural Acid (Base)
 - Catalyzes Reactions
 - ✓ Eliminates Waste
- Facile Processing
 - Homogeneous Reactions
 - ✓ Separation by Cooling

$$H_2 O \xleftarrow{K_W} H^+ + O H^-$$


Gas-Expanded Liquids (GXLs) Tunable Organic-CO₂ Mixtures

- Good Organic Solvents Miscible with CO₂
- Solubility is Pressure Tunable
- Solvent properties are pressure tunable
- Separation by Depressurization


Homogeneous Catalyst Recycle with GXLs

- Homogeneous Catalysts
 - ✓ Selectivity, Rates
 - Asymmetric Synthesis
 - ✓ Difficult to Reuse
- Paradigm
 - ✓ Homogeneous Reaction
 - Change Phase Behavior for Separation
- "Designer" Solvents
- "Designer" Catalysts

Megan Donaldson, PhD ChBE 2008, Dow; Nicole Hess, BS ChBE 2008, Berkeley

CO₂ Induced Immiscibility: Organic Aqueous Tunable Solvents (OATS)

- Homogeneous Reaction
 Organic/Aqueous Solution
 Ambient Pressure
- CO₂ Induces Phase Split
- GXL Poor Solvent for
 - ✓ Ionic Catalysts
 - ✓Enzymes
- Decant, Depressurize
 - ✓ Catalyst Recycle
 - ✓ Product Purification ¹⁹

OATS for Biocatalytic Synthesis and Purification of Hydrophobic Drugs

- Enantioselective Biocatalysis
 - ✓ Water Insoluble Substrates
 - ✓ Facile Product Isolation and Catalyst Recycle
- OATS Mixture
 - ✓ Benign Alternative for Organics
 - ✓ Higher Enantioselectivity
 - ✓ Higher Efficiency
 - ✓ Higher Stability of Enzymes
 - ✓ Facile Purification of Pharmaceuticals

James Brown, PhD, ChBE, 2000, ExxonMobil; Jason Hallett, PhD, ChBE, 2002, Imperial College, London

Typical Projects: Recent Grants

- NSF, Application of Reversible Ionic Liquids
 - Coupling Reactions and Separations
- AMPAC, Many Topics
 - ✓ Novel Routes to Pharma
 - ✓ Specialty Chemicals
 - ✓ Flow Reactors
 - ✓ Heterogeneous Catalysis
- NSF, Corning
 - ✓ Flow Reactors for Pharma
- Lilly, Applications to Pharmaceuticals
 - ✓ DMSO Substitute
 - Reactions in NCW

- DOE and ConocoPhillips, CO₂ Capture
 - ✓ Single-Component Reversible Ionic Liquids
 - ✓ Silylation
 - ✓ Molecular Design
- PRF, Smart Solvents for Nanoparticles
- Dow, Polymers

 PVC Reactions
- Dow, Smart Solvents
 - ✓ Gas-Expanded Liquids for Pharma
 - ✓ Catalyst Recovery and Recycle
 - ✓ Recylable DMSO Replacement
 - ✓ Phase Transfer Catalysis

Finishing the Degree

- Interviewing -- A full-time job
- Connections and Recommendations
- Average time for PhD = 4.3 years
- Typical Pattern
 - ✓ ~1/3 Academic Employment
 - ✓ ~2/3 Industrial Employment

Greg Marus, PhD ChBE 2011, Albemarle

Recent PhDs from Research Group In Chemistry and Chemical Engineering

• 2007

- ✓ Charu Panday, SW Research
- ✓ Susanta Samanta, Milliken
- ✓ Liz Hill, Rohm & Haas
- ✓ Laura Draucker, EPA
- ✓ Ejae John, U. Trinidad
- ✓ Jack Ford, U. Kansas

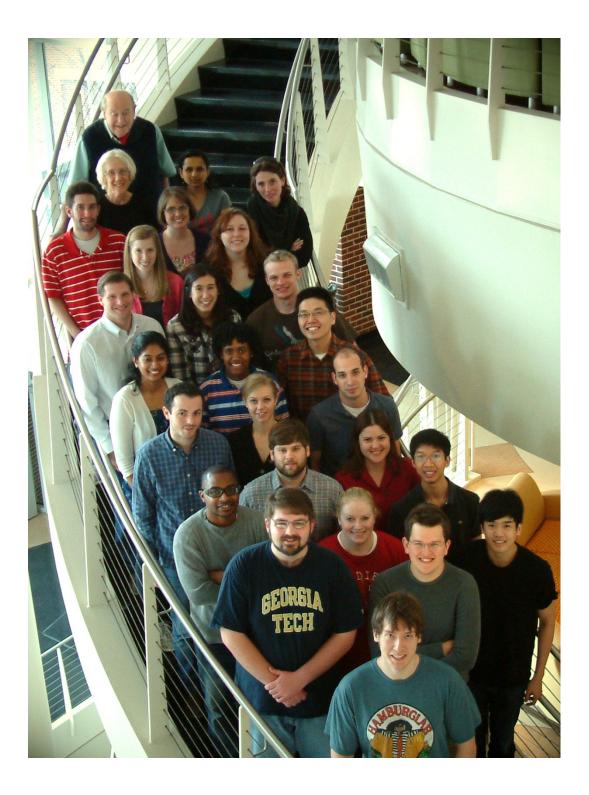
2008

- ✓ John Gohres Evonik
- ✓ Megan Donaldson Dow
- ✓ Reagan Charney Law Firm
- ✓ Michelle Kassner Chevron

2009

- ✓ Tori Blasucci ExxonMobil✓ Kristin Kitagawa BASF
- 2010
 - ✓ Hillary Huttenhower Pratt and Whitney
 - ✓ Ryan Hart -- Exponent
 - ✓ Ali Fadhel GE
- 2011
 ✓ Greg Marus -- Albemarle

Decision Process – Pick a Group


- Research Goals
 - ✓ Education
 - ✓ Satisfaction
 - ✓ Personal Growth
- You Should Seek
 - ✓ Enthusiasm
 - ✓ Motivation
 - ✓Creativity

• We Seek

- Molecular ViewpointHeavy on Chemistry
- ✓Teamwork
 - Multidisciplinary Approach
- ✓ PhD degree
- ✓Experiment + Modeling
- Enthusiasm, Motivation, and Creativity

If You Might Be Interested in Joining Us

- Talk to the Professors
 Chuck Eckert, 2206 ES&T, 4-7070
 Coordinator, Deborah Babykin, 2301 ES&T, 4-3690
 Charlie Liotta, 2201B MS&E, 5-3111
 Coordinator, Michele Yeager, 2201C MS&E, 4-8222
 Talk to the Students
 - ✓ All in the NW Wing, Level 2, ES&T
 - \checkmark Go in any office and ask for a tour
- Come to our Group Meetings

